Pakistan must do R&D on Fusion reactors to produce clean electricity cheaper than coal..!

Posted by Syed Nayyar Uddin on September 19, 2015 in Action Plan to Revive Pak Economy, My Views, Pakistan |

Dear Mr. Prime Minister,

AoA.

Sir,

The following news item (link:- http://www.futurity.org/fusion-reactor-cheaper-coal-785162/?utm_source=taboola&utm_medium=referral&utm_term=timesofindia-timesofindia) clearly spells out a very cheap and extremely CLEAN source of electricity production, from the Fusion Reactor technology.

As is known to the whole world, Pakistani scientists are second to none, in proving their skills and facing the toughest scientific and technological challenges.

As such, you are requested to kindly order the concerned to immediately start working, on the plans to produce extremely cheap electricity with Fusion Reactors, to change the destiny of the nation on a fast track basis; and also to achieve (before due time) the 40,000 MW nuclear power production target fixed to be achieved by 2050.

 

THIS FUSION REACTOR COULD BE CHEAPER THAN COAL
UNIVERSITY OF WASHINGTON

Posted by Michelle Ma-Washington on October 16, 2014

You are free to share this article under the Attribution 4.0 International license.
Fusion energy almost sounds too good to be true—zero greenhouse gas emissions, no long-lived radioactive waste, a nearly unlimited fuel supply.

Perhaps the biggest roadblock to adopting fusion energy is that the economics haven’t penciled out. Fusion power designs aren’t cheap enough to outperform systems that use fossil fuels such as coal and natural gas.

University of Washington engineers hope to change that. They have designed a concept for a fusion reactor that, when scaled up to the size of a large electrical power plant, would rival costs for a new coal-fired plant with similar electrical output.

The team published its reactor design and cost-analysis findings last spring and will present results this week at the International Atomic Energy Agency’s Fusion Energy Conference in St. Petersburg, Russia.

“Right now, this design has the greatest potential of producing economical fusion power of any current concept,” says Thomas Jarboe, a professor of aeronautics and astronautics and an adjunct professor in physics.

HOW IT WORKS

The reactor, called the dynomak, started as a class project taught by Jarboe two years ago. After the class ended, Jarboe and doctoral student Derek Sutherland—who previously worked on a reactor design at the Massachusetts Institute of Technology—continued to develop and refine the concept.

RELATED ARTICLES
ON FUTURITY

Sally Ng stands in environmental chamber facility
Georgia Institute of Technology
Cars and coal can turn trees into ‘polluters’

GrierRings_1
New York University
Power from fusion energy? Why knot?

solarcell_disorder_525
Stanford University
Tiny chaos is key for flexible solar cells

The design builds on existing technology and creates a magnetic field within a closed space to hold plasma in place long enough for fusion to occur, allowing the hot plasma to react and burn.

The reactor itself would be largely self-sustaining, meaning it would continuously heat the plasma to maintain thermonuclear conditions. Heat generated from the reactor would heat up a coolant that is used to spin a turbine and generate electricity, similar to how a typical power reactor works.

“This is a much more elegant solution because the medium in which you generate fusion is the medium in which you’re also driving all the current required to confine it,” Sutherland says.

There are several ways to create a magnetic field, which is crucial to keeping a fusion reactor going. The new design is known as a spheromak, meaning it generates the majority of magnetic fields by driving electrical currents into the plasma itself. This reduces the amount of required materials and actually allows researchers to shrink the overall size of the reactor.

Other designs, such as the experimental fusion reactor project that’s currently being built in France—called Iter—have to be much larger than the dynomak because they rely on superconducting coils that circle around the outside of the device to provide a similar magnetic field.

When compared with the fusion reactor concept in France, the dynomak is much less expensive—roughly one-tenth the cost of Iter—while producing five times the amount of energy.

COMPARED TO COAL

Jarboe and colleagues factored the cost of building a fusion reactor power plant using their design and compared that with building a coal power plant. They used a metric called “overnight capital costs,” which includes all costs, particularly startup infrastructure fees.

A fusion power plant producing 1 gigawatt (1 billion watts) of power would cost $2.7 billion, while a coal plant of the same output would cost $2.8 billion, according to their analysis.

“If we do invest in this type of fusion, we could be rewarded because the commercial reactor unit already looks economical,” Sutherland says. “It’s very exciting.”

Right now, the concept is about one-tenth the size and power output of a final product, which is still years away. The researchers have successfully tested the prototype’s ability to sustain a plasma efficiently, and as they further develop and expand the size of the device they can ramp up to higher-temperature plasma and get significant fusion power output.

The team has filed patents on the reactor concept and plans to continue developing and scaling up its prototypes.

The US Department of Energy funded the work.

Source: University of Washington

Kind Regards,

Syed Nayyar Uddin Ahmad

Leave a Reply

Your email address will not be published. Required fields are marked *

Copyright © 2010-2024 Loud Thinking All rights reserved.